Shape oscillations of particle-coated bubbles and directional particle expulsion
نویسندگان
چکیده
Bubbles stabilised by colloidal particles can find applications in advanced materials, catalysis and drug delivery. For applications in controlled release, it is desirable to remove the particles from the interface in a programmable fashion. We have previously shown that ultrasound waves excite volumetric oscillations of particle-coated bubbles, resulting in precisely timed particle expulsion due to interface compression on a ultrafast timescale [Poulichet et al., Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 5932]. We also observed shape oscillations, which were found to drive directional particle expulsion from the antinodes of the non-spherical deformation. In this paper we investigate the mechanisms leading to directional particle expulsion during shape oscillations of particle-coated bubbles driven by ultrasound at 40 kHz. We perform high-speed visualisation of the interface shape and of the particle distribution during ultrafast deformation at a rate of up to 10 s . The mode of shape oscillations is found to not depend on the bubble size, in contrast with what has been reported for uncoated bubbles. A decomposition of the non-spherical shape in spatial Fourier modes reveals that the interplay of different modes determines the locations of particle expulsion. The n-fold symmetry of the dominant mode does not always lead to desorption from all 2n antinodes, but only those where there is favourable alignment with the sub-dominant modes. Desorption from the antinodes of the shape oscillations is due to different, concurrent mechanisms. The radial acceleration of the interface at the antinodes can be up to 10–10 ms , hence there is a contribution from the inertia of the particles localised at the antinodes. In addition, we found that particles migrate to the antinodes of the shape oscillation, thereby enhancing the contribution from the surface pressure in the monolayer.
منابع مشابه
Ultrafast desorption of colloidal particles from fluid interfaces.
The self-assembly of solid particles at fluid-fluid interfaces is widely exploited to stabilize emulsions and foams, and in materials synthesis. The self-assembly mechanism is very robust owing to the large capillary energy associated with particle adsorption, of the order of millions of times the thermal energy for micrometer-sized colloids. The microstructure of the interfacial colloid monola...
متن کاملCooling Particle-Coated Bubbles: Destabilization beyond Dissolution Arrest.
Emulsions and foams that remain stable under varying environmental conditions are central in the food, personal care, and other formulated products industries. Foams stabilized by solid particles can provide longer-term stability than surfactant-stabilized foams. This stability is partly ascribed to the observation that solid particles can arrest bubble dissolution, which is driven by the Lapla...
متن کاملEffects of catalyst particle size on methanol dehydration at different temperatures and weight hourly space velocities
The effect of catalyst particle size on dehydration of methanol to dimethyl ether is investigated using fixed bed and micro-channel reactors at different temperatures and weight hourly space velocities. The experiments were carried out at 290 and 320oC. The space velocities were changed from 10 up to 90h-1 and from 1.22 to 3.65h-1 for fixed bed and micro-channel reactors, respectively. Consider...
متن کاملArrested coalescence of particle-coated droplets into nonspherical supracolloidal structures.
Colloidal and supracolloidal structures with anisotropic shape and surface chemistry are potential building blocks for the fabrication of novel materials. Droplets or bubbles are often used as templates for the assembly of particles into supracolloidal structures of spherical shape. Particle-coated droplets or bubbles have recently been shown to also retain nonspherical geometries after deforma...
متن کاملOptimization of Dogleg Severity in Directional Drilling Oil Wells Using Particle Swarm Algorithm (Short Communication)
The dogleg severity is one of the most important parameters in directional drilling. Improvement of these indicators actually means choosing the best conditions for the directional drilling in order to reach the target point. Selection of high levels of the dogleg severity actually means minimizing well trajectory, but on the other hand, increases fatigue in drill string, increases torque and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016